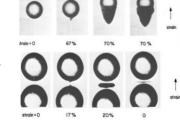


Muhamed Jesbeer KALLUNGAL Thèse CIFRE 2018-2021 MATEIS (Laurent Chazeau, Jean-Marc Chenal, Eric Maire, Jérôme Adrien) IMP (Claire Barres) LRCCP (Florence Bruno)

Context


Filled Elastomer

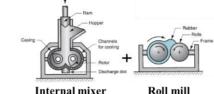
- Anti-vibration, Sealants, Tires etc.
- Resistance to high deformation and fatigue solicitation.

Fatigue failure in filled elastomer

• Crack initiation due to void nucleation In the vicinity of micro-structural defects

Gent *et al.* 1984: Nucleation and cavitation of voids near a defect under strain deformation

Objective


 Study the impact of morphology and spatial distribution of the defects on crack initiation and propagation mechanism under fatigue solicitation

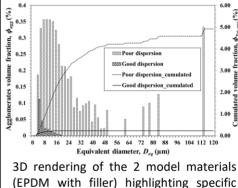
Impact of processing defects on fatigue and crack propagation in filled elastomers

Method and tools

Processing of materials

 To generate tailor made micro-structural defects using an internal mixer and roll mill.

Characterization


- 3D acquisition of microstructural defects using X-ray Tomography
- 2D surface information of the materials using SEM.

Mechanical Properties

- Tensile and Fatigue tests on notched and unnotched samples
- In-situ/ex-situ tensile experiments under X-ray tomography to study the crack initiation and propagation mechanism

Results

Impact of processing on defects population

defects in them $(1voxel = (700nm)^3)$.

a) Good dispersion. b) Poor dispersion.

Cumulated volume fraction.

UNIVERSITÉ DE LYON

Perspective

- Ranking of the importance of defects (Voids, agglomerates, inclusions of metallic oxides etc..)
- Understand the impact of defects population density and characteristics on the initiation and propagation of crack under static and dynamic solicitation.

